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INTRODUCTION

If ro is the unit interval then the celebrated theorem of Jackson [3] tells
us that for every continuous function, f(z), there is a polynomial, P(z), of
degree < n such that

I f(z) - P(z)] AwAI/n) throughout r o . (1)

Here Wf is the modulus of continuity of f and A is an absolute constant.
If we think of r o as part of the complex plane rather than merely part of

the real line, then a natural question arises. Does (I) remain true when ro
is replaced by some other arc? We will say that a Jordan arc r has the
Jackson property, or, more briefly, has 1, if (I) remains true when r is
written for r o .

The question of just when r does have 1 is apparently not a simple one.
It is not even obvious that anything but a line segment has 1! Equally
frustrating, on the other hand, is that it is not easy to point to any Jordan
arc which fails to have J! Nevertheless, the truth is that some do and some
don't and in this paper we find conditions for determining which is which.
These conditions fall short of a necessary and sufficient criterion, however,
and we can only conjecture as to what such might be. One attractive conjec
ture is that r has 1 if and only if r is C\ but we are far from this result.
What we do prove is that rectifiability (i.e., BV) is necessary for J, that
C1+8 is sufficient for J, and that Cl- (appropriately defined) is not sufficient
for J.

A special case which, so far, has us baffled is that of the simple "corner"
[0, 1] u [0, i]. This isn't Cl and so our previous conjecture would imply
that this corner doesn't have 1. We cannot even prove this! Another special
case of some interest is that of a circular arc. Here (I) becomes equivalent
to a statement regarding approximation by trigonometric polynomials.
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Namely, given a continuous/there exist Co, C1 , -Cn - 1 such that
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If(x) - 'f Ckeikx I~ CWf(lln) on [0, 27T - 0]. (2)
k~O

Here 0 is any positive number dand C depends only on o.
It had been known for some time that the exponentials eikx with k ;:? °

were sufficient for approximation on [0, 27T - 0], but (2) gives the quantita
tive version of this result. This statement (2), which is a corollary of our
Cl+8 theorem, was originally conjectured by Feinerman and in fact it was
this conjecture which led to our present general formulation. One further
remark is pertinent. We point out, namely, that the quantity lin has the
significance of being the absolute lowest possible order of magnitude. Thus
there are no arcs for which (1) could hold with lin log log n replacing lin,
for example. The hunt for arcs with J is therefore the hunt for arcs along
which polynomial approximation is, in a sense, optimally good. (A proof
of this will be given below.)

DEFINITIONS AND PRELIMINARY REMARKS

We now give some necessary definitions.

DEFINITION I. Y' is the class of all complex valued functions, f, defined
on the whole plane and satisfying I fez) - fez')! ~ I z - z' r for all z, z'.

DEFINITION 2. If S is any compact plane set then

Pn(S) = max min max [f(z) - P(z)l.
fEY' degp< n ZES

DEFINITION 3. If S is any compact plane set then

DEFINITION 4. Cl- is the class of all complex Jordan arcs parametrized
by z == 2(t), t E [0, I] with Z(t) E Cl and Z'(t) # 0 except possibly at t = 1.

Intrinsically, these are curves of finite length such that if any neighbor
hood of the right endpoint is deleted the curve becomes Cl.

DEFINITION 5. If S is a plane set and E > °then S£ is the set of all points
within E of S.

Some general remarks are now in order.
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Remark I. r has J if and only if Pn(T) ~- O( lin).

Remark 2. Pn(S) ~En(S),

Remark 3. If r is any arc (not degenerating to a single point) then there
is an a 0 such that En(r) a/n.

We include this last remark because, together with R2, it illustrates the
"absolute lower bound" nature of lin that we referred to previously.

We turn to the proofs. To see R3 we rotate if necessary so that r is not a
line segment in the real direction (clearly En is not affected by a rotation).
Now let A = minr 1m z, B = maxr 1m Z and note that A < B. Next choose
zo, Zl ,... , Zn so that 1m Zk are equally spaced between Ace 1m Zo and
B = 1m Zn . Clearly, then, for i j,

! Zi - z,. I ?; 11m(z - z.)! = B -~ A ! i - j!
'J n .

B-A
?:-~~

n

and R3 follows.
R2 is a standard result [4] and is proved as follows. Let Zo, Zl ,.... Zn be

an extremizing set in D3. The map P(z) ~ (P(zo), P(Zl),'''' P(zn)) is a linear
map from a space of n dimensions (polynomials of degree < n) into a space
of n --'- 1 dimensions and as such must be deficient. This means that there
must exist CXo , CX1 , ... , CX n such that cxoP(zo) -'-- ... exnP(zn) 0 for all such
polynomials. Now define f(zo), f(zl)"'" f(zn) by f(zk) = (E/2) Sgcx!, where
E = En(S). Since, for i eF j, ! f(zi) - f(zJI :s; E/2 + E/2 =.c E ~i Zi I, it
follows that.r can be extended to lie in Y' (for example, one point at a time,
by transfinite induction). We assert that for no P of degree < n can we
have: f -- PI < E/2 throughout S or even at all the points Zo , ::1 ' ::2'"'' Zn .
Namely

i E/2 - SgCikP(Z,J < E/2 => 0 < Re SgCi"P(Z,J ~, 0

< Re CikP(Z,J, and this

holding for all k would contradict L CikP(Zk) = O. Thus we have produced
anfE,'/' which cannot be approximated within E/2 and R2 is proved.

Finally, we turn to Rl. One half is obvious, for if Pn(r) eF O(1/n) then
there exist f E :/' which cannot be approximated within C/n. This of course
is a violation of J since wtCl/n) :s; lin for any fE :/'.

On the other hand, suppose that Pn(r) :s; A/n. As before, by transfinite
induction, we may, if n is sufficiently large, extend fez) to the whole plane
without increasing its modulus of continuity. Next cover the plane by an
equilateral triangular mesh with the sides of the triangles equal to l/n. Then
define g(z) to be equal to fez) at all the mesh points and to be linear (in z
and z) inside each triangle. Two things follow from this construction. First
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of all, if we denote by Vz the nearest mesh point to z, then we have

I fez) - g(z) I ~ I fez) - f(Vz) 1+ I g(z) - g(Vz)1

~ wJC1/n) + wuCI/n) ~ 2wf(l/n). (3)

Secondly, within any triangle g(z) is linear and so its gradient is bounded
by its difference quotient at the vertices. In other words, I grad g(z)1 ~

nwJCI/n). But this tells us that for any z and z' we have 1 g(z) - g(z')1 ~
nWf(l/n) 1 z - z' I, or that g(z)/nwJCI/n) E .<f'.

By D2 then we can find a P(z) of degree < n such that, throughout r,

I g(z) I
nWf(1/n) - p(z) ~ peT) ~ A/n.

Multiplying out and setting P(z) = nwJCI/n) p(z) gives

I g(z) - P(z)! ~ AWf(1/n).

Combining this with (3) gives (1) with A + 2 written for A. R1 is proved.

BASIC THEOREMS

THEOREM 1. If r has infinite length then r does not have J.

Proof By R1 and R2 we need only prove that En(T) oF O(l/n). Indeed,
we show more: given A, En(T) ~ A/n for all sufficiently large n. Let Z(t),
o :S; t :S; I, be a parametrization of r.

Since the arc length is infinite we may pick N so that

N

L: 1 ZU/N) - Z[U - I)/N]I ~ 2A.
j~l

It follows that either

L I Z(2k/N) - Z[(2k - l)/N]1 ~ A
k

or
L I Z[(2k + l)/N] - Z(2k/N) I ~ A,

k

and without loss of generality we may assume the former.
If we now use the continuity of the inverse function, we are guaranteed

that, for n sufficiently large,

It - s I ~ l/N ->- I Z(t) - Z(s) I ~ A/n.
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Now divide each line segment [Z[(2k I/NI], Z(2k/N)] into 111 equal
parts where m is the greatest integer in iliA Z(2k/N) Z[(2k ... I/N)]!.
This guarantees that the pieces have length at least A/n. Each of the sub
division points, in turn, is a projection of some point on r so that these
points are separated by at least A/n. Also any two such points coming
from different k have this same separation because of the continuity cited
above.

The total number of points we have produced, however, is

and so, by D3, the proof is complete.

THEOREM 2. There exists an arc r which is Cl- but which doesn't have J.

LEMMA I. If S consists of the three lines segments [a, b], w· [a, b],
w2 . [a, b], where 0 < a < band w = e2nij3, then

b (Vb - Va)"
Pn(S) ); 3n2/3 vb + va .

Proof. Choose fez) ~~ I z I and observe that fEY'. Now choose p(z) of
degree < n to be its best polynomial approximant on S. By D2, then,
throughout S, : fez) - p(z} ,:;: Pn(S) = p.

This means that on [a, b] we have I z - p(z)1 < p, I z - p(wz)[ P,
[ z - p(w2z) I ,:;: P, and adding these three inequalities gives

[
__ p(z) -f- p(wz) -: p(w2z) I ---- [ b]
.:. 3 "'" P on a, .

Here we have a bound for a polynomial on [a, b] and this, by the
Tehebychev estimate, yields a bound for it throughout [0 . b]. The result is
that, on [0, b],

I _ p(z) + p(wz) + p(w
2
z) 1____ IT (b + a)1 /' (Vb + Va)n

z ~P n ~p././'
3 b-a vb-va

If we finally write z = bt1j3, we obtain

! t1j3 - Q(t)[ ,:;: e (V~ + v~)n throughout [0, I], (4)
b vb - va

where Q(t) is the polynomial [p(bt1j3) + p(Wbt1j3) -1.- p(w2bt1j3)/3b].



JACKSON'S THEOREM ON COMPLEX ARCS 211

But lower bounds on approximations to t~ are well known [l)! Indeed,
these assure us that for all Q(t) of degree < n we must have I t 1 /

3
- Q(t)1 :?:

1j3n2/ 3 for some tin [0, 1].
Comparing this to (4) proves the lemma.

Proof of Theorem 2. The idea is a simple one. We make up T by stringing
together smaller and smaller replicas of sets S described in our lemma. Since
this T will contain all of these S we will have Pn(T) :?: Pn(S) and the lemma
will produce an adequate lower bound. The details follow.

For k = 1,2, 3, ... we choose a = 2-9k, b = 2~k, form the set S as in the
lemma and translate it by 2-k • The resulting sets we call Sic and we observe
that they are disjoint, have total length finite, and lie in a bounded region.
We can obviously connect them all by an arc T which is C1-. For this T
we have Pn(T) :?: Pn(Sk) and since Pn is translation invariant the lemma
insures that

Choose k so that 24k- 4 ~ n < 24k and conclude that

Hence Pn(T) 0# OOjn) and Rl completes the proof.

THEOREM 3. If T is a Jordan arc in Cl+S then T has J.

To facilitate the proof we find it more convenient to work with closed
Jordan curves rather than with arcs-and so we turn to the related closed
Jordan curve.

We may, by a linear map, assume that the endpoints of Tare -2 and
+2. We then perform an "exterior" map by writing z = w + Ijw. This
maps the complement of T in a schlicht manner onto the exterior of some
closed Jordan curve which we call K and maps the "two sides of T" onto
the curve K (We note that smoothness properties of T are inherited by K)

The point is that approximation on K by polynomials in wand Ijw yields
ordinary polynomial approximation on T. For if ISew) - few + Ijw)1 < E

on K, then changing w into Ijw gives ISOjw) - few + Ijw)1 < E on K and
adding yields

ISew) i S(1jw) - few + 1jw) I < E

on K But if Sew) is of degree < n in wand Ijw, then [Sew) + S(1jw))j2
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will be of degree < n in I\' -- 1/11'. Furthermore the 111.0.C. of f(1I' Ijlr)

as a function of \I' is bounded by a constant multiplied by its m.o.c. as a
function of z I\' 1/1\'. Thus to prove Theorem 3 it suffices to prove the
following.

THEOREM 4. Let K be a closed Jordan curce o( class Cl i 8 surrounding
the origin in the 11' plane. For GIl)' f(l\') E (j' there is an S(w) of degree < n
in Ii' and 1/11' such that

f(w) -- S(w)1 A/n along K.

Prool This divides into three steps. First, a conformal map is made of
a neighborhood of K onto a neighborhood of C, the unit circle. Second,
approximations are made on the unit circle by the standard Jackson theorem.
Then, upon return to K, these polynomials become analytic functions and
in the third step we utilize the theory of polynomial expansions of analytic
functions.

LEMMA 2. 1l T(~) is ol degree k in ~ and I/~ and ill T(~)I M on C (the
unit circle), then, for any E in (0, I), ! T(~)I :S; M(l E)-k and 1T(~)I

Mk(l - E)-U.+ll on C,.

Proof e'T(~) is analytic in I ~ I I so that, in I - E I ~ I I,
(l .- E)/ I T(~)I eT(~): M. Again, t-kT(~) is analytic in I ! ~ ! :S; 00

so that in I :S; I ~ I I - E, (I - Ey I T(~)I :S; (1 +- E)-k I T(~)I "'c;: I ~-kT(~)1 <
M. Combining these two proves the first half. For the second half, simply
apply Bernsteins theorem [5] to obtain I T(~)I( Mk on C and then use the
first result with k +- I replacing k. [Note that if E < t then we can replace
(1- E)-l by e2E in the above bounds. This form will sometimes prove handy.)

Step I. Let K be parametrized by 11' = w(~) where ~ runs around C, the
unit circle, so that 11' E C\ w'to: Lip(o), and w'-l 0. By Jackson's theorem on
the circle then we can find T(~) of degree k in ~ and I/~ such that along C

(5)
and

For k large enough we can weaken this last to read

I T(DI where °< ex < p. (6)

We now show that for some fixed positive a (independent of k) T(~) is
schlicht on Calk' Suppose otherwise that T(p~) = T(p'f) with I = I ~ I =
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I g' I and I I - p I ~ a/k and ] I - p' I ~ a/k. Then I nD - T(Oi ~
: T(~) - T(p~)1 + i nO - ]T(p'f)] :(: (l - p) M 1 + (l - p') M 1 where
M 1 == max

ca1k
I T'(~)]. By Lemma 2 and (6), however, we have M 1 :(:

f3(l -- a/k)-k ~ f3(l - a)-l and the above estimate becomes

I T(~) - T(nl ~ 2a(l - a)-lf3/k ~ 4f3(a/k)

Hence by (5), for k large enough, we deduce that

(assuming a < t).

] w(~) - w(O] :(: (4f3 + I)(a/k). (7)

Recall now that the inverse function to w has a continuous derivative and
conclude from (7) that for some y we have I ~ - f ] :(: y(a/k). In turn, this
easily gives

I pg - p'g' I :(: (2 + y) a/k.

Now, by the power series expansion, we have

(8)

where I , I :(: M 2 = maxca1k I T"(~)I. Again we apply Lemma 2 and obtain

M 2 :(: f3k(l - a/k)-lk+l) ~ f3k(1- a)-2 :(: 4f3k, (10)

and this combined with (9) and the fact that T(p'O = T(p~) gives

] p'f - p~ i I T'(p~)1 :(: t ]p'f - p~ 1
2 4f3k.

Cancel1ing and applying (8) gives

I T'(p~)1 :(: (4 + 2y) f3a.

Once more we have

I T'(DI ~ I T'(p~)1 + (1 - p) M 2

and an application of (10) and (1 I) gives

I T'(~)I :(: (8 + 2y) f3a.

(11)

(12)

For a small enough, (12) and (6) are in contradiction [e.g., we can choose
a = 01./(9 + 2y)f3] and the proof is complete.

Next, we observe that, for small enough fixed a > 0 there is a b > 0
such that

(13)
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Simply apply Rouche's theorem [6] to T(~) .~ w in the disc Ll: ~. ~()

a/k where ! ~() I = 1 and 11'- w(~,;\))! b/k. We have

T(g) - w + T(~()) 11' (~ - ~o) T'(~o) -, R(~).

By (5), for large k, I T(~o) .~ 11' 2b/k and by (10) R(g): Ha;k)2 M 2

2a2fJ/k; finally, (6) gives T(~())I ex. The result follows, therefore, as soon
as ex(a/k) :): 2a2fJ/k+ 2b/k or (ex/2)a - fJa 2 ?; b. In fact, if a ,:;; ex/4fJ we can
choose b = (ex/4)a. This applies, for example, if a Ak-8 for large k and so
tells us that for any A there is a B such that

Step 2. Now letfE C/' so that, for small enough "\, ,.\f(w(~)) is in Y as
a function of t Applying Jackson's theorem [3] for the circle therefore gives
a V(g) of degree 11'1 in g and l/g such that

A/m, A on C.

Next form the function VeT-lew)) and observe by (13) that it is analytic
on K b / k • Furthermore, it is bounded there by max

ealk
[ V(~)! which by

Lemma 2 gives

I V(T-l(W)) I ~:;; A(l - (a/k))-m ,:;; Ae2amjk throughout K b / k •

Step 3. We now dip into the theory of polynomial expansions of analytic
functions. What we need specifically is the following lemma.

LEMMA 3. Let K be a closed Jordan curve of class C IT8 surrounding the
origin and let few) be analytic and bounded by Min K•. There must exist an
Sew) of degree < n in wand I/w such that all along K I few) - S(w)1 ,:;;
(AM/E3) r cen (A and c being constants depending only on K).

Applying Cauchy's theorem gives

w = _1 r JJ!.L dt __1 ( JJ!.L dt
f() 27Ti . 8) t - 11' 27Ti JB

2
t - w '

where Bl , B2 are, respectively, the outer and inner boundaries of K• . This
expresses few) as the difference of two functions. The first is analytic and
bounded by AM/E throughout the E/2 neighborhood, say, of the "inside"
of K, while the second is analytic and bounded by AM/E throughout such a
neighborhood of the "outside" of K. Thus our Lemma 3 emerges from two
applications of the more cIassicallooking lemma below.
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LEMMA 4. Let R be a bounded region whose boundary is a Jordan curve
of class Cl+8. Let few) be analytic and bounded by M in R•. There exists
pew) of degree < n (in w alone) such that, throughout R,

i few) - p(w)1 ~ (AM/E2) e-c• n •

(Here A and c are positive constants depending only on R.)

Proof We use the method of Faber [7]. Namely, introduce the mapping
function fLCt) = At + Co + CI g-I + C2 g-2 + "', A> 0, which maps the exte
rior of the unit disc onto the exterior of R. Because R is bounded by a
Cl+8 curve, Kellogg's theorem [2] tells us that fL(t) E CI and has a non
vanishing derivative in I t I ;?; I. We conclude, therefore, that the map of
I t I ,= e2c

• lies in R. for some small fixed c > O. We also conclude from the
nonvanishing of fL'(g) that the map of this circle lies at least dE from R where
d is some other fixed positive constant.

Now write

and observe first of all that this is a polynomial of degree < n in w. We
have, namely,

and if we move the t-contour to a very large circle we observe that
fL'(~t)/(fL(tt) ~ w)nn R:i p/(ptt)n+1 while (I - tn)/(I - t) R:i tn-I. Thus we
obtain an integrand which is 0(1-2) and this shows that the integral is O.

Next observe that

For if we again allow the t-contour to change to a large circle, we pick up
a residue at t = 1 equal to

The new integrand is like (p/ptt) . (-I/t) which is 0(1-2), and so the
integral is again O.
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Thus we have

I feW) -- p(w)1

D. J. NEWMAN

AM
:S:; -2- e-EnC

E

as promised. If we apply Lemma 3, to VeT-lew)) with b/k replacing € and
M given by (16), we obtain an Sew) of degree < n in wand l/w such that
onK

I VeT-lew)) - S(w) [ :S:; (AkS/b 3)e 2a(m/k) e-C(b/k). (17)

Finally, we estimate VT(-l(wm) - V(g) on C. By (5) and (14) we know
that T-l(w(g)) lies in CBk - (1 + 0), so that we have

By (5) and (6) this first factor is bounded by Ak-l!Hl and by Lemma 2
and (14) the second one is bounded by A exp(2Bmk-nH»). Together these
yield

I V(T-l(w(g)) - Vml :S:; A[exp(2Bmk-(lH»)/kl+8]. (18)

The proof is now completed by choosing m = bn/4aA and k = nl /lH.
Our estimates (15), (17), and (18) become, respectively,

\f(w) - Vm I :S:; A/n,

and

IVeT-lew)) - Sew) I :S:; An3 exp[(-cb/2) n8
/lH]

\ VeT-lew)) - V(g) I< A/n

and the theorem follows by addition since clearly n3 exp[(-cb/2) n8 /lH] =
O(1/n).
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